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Fredholm integral equations are constructed for unknown normal stresses on the
domain boundary in the fundamental problem of plane elasticity theory, and
their investigation is given,

l, Formulation of the proble m,We shall solve the fundamental
plane problem of elasticity theory for external forces given on the boundary when the
elastic medium occupies a finite or infinite domain of the plane of the complex vari-
able z = z -- iy, and the extemal forces on each of the bounding domains of the
closed contours are statically equivalent to zero,

We consider the (connected) domain S™ bounded by simple closed non-intersect-
ing contours Ly, Ly,. .., L,, of which the first encloses all the rest, The symbol

L will denote the set of all contours, There may be no external contour L, ,and
then the domain S will be infinite (plane with holes),

Let S~ denote the domain complementing S* in the whole plane, Sk~ the
domain enclosed within Ly (K = 1, 2,. . ., m}, and §Sy*, S, the domains in-
side and outside of L,, respectively, Furthermore, let n be the normal to the
line L drawn at any point and extemal relative to S*, and T the direction of
the positive tangent to- L at the same point, For definiteness, we consider that
direction on L positive which keeps the domain S* on the right., we assume the
line L to have continuous curvature everywhere,

2, On properties of stress functions in a multi-
connected domain, Representation of biharmonic
functions, To facilitate the presentation let us recall certain known formulas
of plane elasticity theory and let us indicate the properties of the stress functions, We
borrow all the necessary formulas from the book by N, I. Muskhelishvili [1],

The biharmonic stress function u (z, y) (Airy function) and its first derivatives
are representable by the formulas

u=TRelzg (z) + 1 Nz =0 — iy (2.1)

) 7 —_ ——
Tt i =@ O FPE, P = K

where @,%,y are analytic functions of the variable z in a domain occupied by
an elastic medium, In the finite domain S* they have the form (see [1], Sect. 35)

m - (2.2)
Q(z)=1z E Apln(z—z.) 4 2 Vi In (s zp) 4@, (2)
=1 o’
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X)) =z 2| Vi 10 (z —z,) 4- 2 V" In(zmez) + %, (3)
=1 K—1

m
Y (z)= 2 v In(z — 7)) + Va (2)

k=1
where 1z, is a certain fixed point within §,~ (k =1, 2,. .., m), A is an arbitrary
real number, vp, ¥a', ¥x" are arbitrary complex constants, and @y, %a: Ps  are
holomorphic (single-valued, analytic) functions in S+.

It is seen that for the Airy function to be single-valued in §+*, it is necessary

and sufficient to comply with the conditions

Vo=, Imy"=0((k=1,2,... m (2.3)

and this means (see [1], Sect, 33) that the external forces on the contour of each of
the holes are statically equivalent to zero,

In the presence of (2, 3), for the elastic displacements to be single-valued it is
necessary (and sufficient) that

Ap =0,y =0(k=1,2,..., m)
and this is equivalent to the requirement of holomorphicity of ¢ (z) in S+, These
latter conditions, expressed in terms of the function u (x, ¥), are

dAu aAu oz

/
S—a-,;—ds=0, S kz%‘——Au-ﬁ)ds=0
L, Lk

dAu ay
(yW"Au"bn—)dszo (k=1,2,....m)

(2.4)

Therefore, if the stress function u (z, y) is single-valued in the domain S* ,
then for the corresponding elastic displacements to be single-valued, it isnecessary
and sufficient to comply with the conditions (2, 4),

Upon compliance with these conditions, the functions ¢ (z), ¢ (z) are holomorphic
in S+, and the function ¢y (z) will generally be multivalued (it has the form of the
right side in the second relationship of (2,2) for v," = 0, Im " = 0).

The above-mentioned propetties of the stress function were apparently first estab-
lished by Grioli [2] on the basis of the paper [3].

In the case when there is no contour £, , S* is an infinite domain located out-
side the contours L,, L,,. . ., Ly, In this case, under the same assumptions relative
to the external forces applied to Ly , and the single-valuedness of the displacements,
the nature of the stress functions as well as the potentials ¢, %, % remains as before
in any finite subdomain of the domain S+,

However, the functions ¢ and y will not generally be holomorphic in the whole
domain S*, Itis known that the Kolosov — Muskhelishvili potentials admit of the
following representations in the neighborhood of the infinitely distant point (see [1],
Sect, 36)

@ (D) = @0 (2) + Py (2, % (2) = %o (2) + %a (2) (2.9)
@9 (2) = Iz, %o (2) = IV2%, I'" = B’ -+ iC’
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Px (Z) = Uy —..L B B JEEEN (2. 6)

Ye(i=Alnz | Ay ayfz-t— b —

Here T, B’, ¢’ are real constants characterizing the given stress field at infinity,
and A is a certain real constant, The formulas(2.6) mean that the functions ¢, (z),
VY (z}  are holomorphic outside a circle Ly of sufficiently large radius R with

center at the origin, including the infinitely distant point,

Let us present certain fundamental formulas for representations of the biharmonic
functions which are derivable by a standard method by using appropriate elementary
solutions, A certain difficulity occurs just in the case of the infinite domains when
the behavior of the function under consideration must be taken into account in infinit-
ely remote parts of the plane, For the class of functions which we shall discuss later,
this behavior is characterized completely by (2.5).

The letters P, P, will denote points of the domain S* or §—, and ¢, P,
will denote points on the line 7, where ¢ will usually be the variable of integra-
tion, The affixes of these points on the complex plane shall be z, z;, 1, ¢y, respectiv-
ely, where z = - iy, z; = x, 4 iy;. The arc abscissas of the points ¢, ¢, are
denoted by s and s, and are measured in the direction of the positive tangent T
to the line L on each contour Ly (k= 0,1,..., m). We shall not introduce new
symbols to denote the coordinates of the points @ and P, by assuming ¢ = z -+ iy,

t, = @o - iYp, OI more accurately, ¢ = xz(s) ;- 7y (s} and 2o == z (s9) -+ ¥ (s0)-

To avoid the introduction of new symbols for the functions f of points of the line L
we shall also sometimes not distinguish the notation /() and f(Q) or f (&) and
f(Pg)-

writing the Green's identity for the pair of functions u, Av, and then for Au, v,
adding the formulas obtained, and relying upon the elementary solution of the bi-
harmonic equation, we obtain the known representations for a finite domain

W(P) = g V17 @ Pi Q)+ 1 P Qlds, Pt 27
L
0=‘21?§[L°<u; P; Q)+ 1w P; Q)lds, PeEST

Here (8/dng is differentiation with respect to the normal direction to  1° at
the point (Q):

1 1 dAu 2 i
L° (u; P; Q)=—4—I:r21n—m—AuanQ rzlnT]

r

) Ju a

1 1
l(u; P; Q)=(ln——1 m—uan—an—;—, Qel, r={z—t]

r

Applying the Laplace operator to both sides of (2, 7), we obtain

1 (2.8)
Au(P)=W 1 (Au; P, Q)ds, P& S+
L
1
0=WSI(AM; P, Q)ds, Pe&s-
L
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The function Au is evidently harmonic in §* , and should consequently satisfy
the condition

S 8L 40 (2.9)
an
L

The known relationships

u(P)= -5 ! Sl(u,P Q)ds, P& 3" (2.10)

1
L

follow from (2,7) for a function  (z,¥) which is harmonicin 5,

Let us examine the case of an infinite domain in greater detail, Let us introduce
a domain Sp located outside the contours Ly, L,,. .., L, and within the circle
Lp ofradius R with ceater at the origin; R is taken so large that the circle Lp
would enclose all the contours L, k = 1, 2,. . ., m, whose set, i,e,, total domain
boundary, will again be denoted by L. Letusset
(2.11)

U lg = Uy

where uo is defined by the first formula in (2. 1) and the last three formulas in (2. 5)

= Re [Z @ (2) + % (D] = (2.12)
p? [T -+ B’ cos 2¢ — C' sin 2 8}, z = pe'®
cx€°°>=z(r— B), 0, = 2(T + B)), 12y = 2 ¢ (2.13)

(0, Oy, Txy are the stress components), Let us recall that the values of the stress
components, i.e., the quantities (2, 13), are given at infinity when considering the
plane problem for domains containing the infinitely distant point of the plane,

The right side of (2, 12) is an Airy function corresponding to the homogeneous
stress field caused by the forces (2, 13), It is biharmonic in any finite part of the plane
and for large |z|

up = 0 (p?) (2.14)

The relationships (2,7) are evidently valid in S, for the function © —uo, There-
fore

1
w(P) =g § (L P, Q)+ 1t P, Qs PES,
L+Lp

i
0= | Lo P, Q+iGi P, QIds, PEST, k=12,...,m
L+Lp

Moreover, analogously to (2, 9)

dAu, {2.15)
G ds =10
L+Lp

Let us consider the function
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we (P) = —2%—- S[L"(u*'. P, Q) 4 I(uy P, Q)lds

Lr
. (2.16)
Awo(P):—ﬁ" Sl(Au*, P, Q)(]S
Lk

where P is an arbitrary point in any finite part of the plane z. On the basis of the
first formula in (2. 6), the estimates
0Au,
Au=0(:z|?, 5, = 0(:z"?

are valid for large |z) , consequently the integral in (2, 16) tends to zero at R — oo.
It hence follows that

Aw, = 0 everywhere on the plane z (2.17)
On the same basis, in the limit as R — - , the equality (2, 15) becomes

. f)_,&u* de — S oAu ds = 0 (2. 18)
an J on

L

It is almost evident that upon compliance with the condition (2, 18) the function
1

T g [L° (s P, Q) + 1w P, Q)]ds

I

cannot grow more rapidly than plnp at infinity, Taking (2. 14) into account, we
hence conclude that for large |z |

wy = 0 (0% (2.19)
Now on the basis of (2,17) and (2, 19)
wo (2. 1) = ar + Py 4 v

follows, where o, B,y are arbitrary real constants, We shall not turn attention to
this trinomial since it does not yield nonzero stresses,
In the long run, the representations

u (P) = uy (P) +—21n—- S [L°@ Py, Q)+ 1(w; P, Q)ds, PSS+ (2.20)
L

i
ty (P) = T,:g [L°(w P, Q) 4105 P, Q)lds, PES, k=1,2,...,m

hold for the stress function u (x, y) in the infinite domain S+
Correspondingly

1 ¢
Au(P) = huy ( Py 45—\ 1(Aw: P, Q)ds, P&ST 2,21
2%, ( )

L

oy _
AuO(P)_—._»—én—Sl(Au; P, Qjds, P=S,, k=1,2,...,m
L
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Now (2, 18) should still be added to the preceding formulas, It is understood that
the conditions (2, 4) that the displacements be single-valued remain unchanged.

3, Integral equations of the plane problem, Under
the conditions introduced, the plane problem (the problem of plane strain or the
generalized plane state of stress of an elastic body) is to determine the biharmonic
stress function z (z, y) in the domain S* by means of the boundary conditions

du . ou .

E—I—-{—LW:]‘I(t)—}—zfz(t)—{—c(t) on [ (3.1)
where fy, f, are functions given on L which are single-valued and continuous on
each of the contours L, comprising L , and subject to the conditions:

(hiz +-fdy =0 (k=1,2,...,m) (3.2)
Ly

and ¢ (t) = ¢, = &y + ipy on Ly, where ¢, are complex constantsto be
determined together with the function u . Only one of the constants ¢, can be
fixed arbitrarily; we shall consider ¢ (f) = 0 on L, . Moreover,. it is required
from the function u that it satisfy the following additional conditions

OA .
S 0:ds:0 (k=0,1,2,...,m) (3.3)
Ll.‘
) o0Au oz dA o
S(x-a—,;——AuW>ds=O, S(y a:—Aqu—)ds=0 (3.4)

In the case of an infinite domain, the boundary conditions (3, 1) are given in the

set L;, L,,. .., Lp,and in conformity with this, one of the additional conditions,
namely (3.3) , drops out for k& = 0 . The condition at infinity
u(z, y) =u,(z, y) + 0 (lzl) (3.9)

should still be appended to these conditions, where U, is given by (2.12), and the
second term is the right side of the first formula in (2, 1) if the corresponding right
sides of (2, 6) are substituted in place of ¢ and y . (More accurately, all the second
order partial derivatives of u should be given at infinity, and this will be equivalent
to giving the function u itself in the form (3.5)). The constant ¢, can here also
be given arbitrarily on any one of the contours L, (k = 1, 2,. . ., m),be consider-
ed zero, say, as we shall do, Therefore, the number of unknown real constants to be
determined during the solution of the problem equals 2m and 2m — 2 in the case
of the finite and infinite domains, respectively.

Proceeding to the construction of the integral equations for the finite domain S,
we rewrite condition (3. 1) in the form

u = go(t) + oz -+ Pry + My (3. 6)
9 d ?
= ) e by

go(t) =\fidz 4 oy, ha(t) = frge -+ frge o8 LGk =0, 4,...m)

0
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According to the above, it can be considered that @, == B, -~ 0, and we shall
neglect the constants A, since they play no part in solving the problem,

Let us insert (3, 6) in place of # and du/0n in the right side of the first equal-
ity in (2.7), and let us take into account that the function @,z -+ Pry +— Ay s
everywhere harmonic. Then by using (2, 10) we obtain the following integral repres-
entation for the solution of the problem formulated (the additive constant %, is omit-
ted in the right side)

w(P) - ——1——5];(11;1); Q)ds - w(P), P S (3.7)

2n

w(P) == %S [(ln -IL — 1) ho(Q — 8o (Q)Fan-l“*:—] ds (3.8)

The function w (P) (the sum of simple and double layer potentials with known
densities) is given on the whole plane, It undergoes a discontinuity when the point

passes through the line L , which is not essential to the subsequent exposition,

Let us pass to the limit P — P (P, & L) in(3.7), and let us differentiate the
limit equality twice with respect to the contour arc, (For the differentiation with
respect to the arc s to be legitimate, it is necessary that the given functions g, and

hy be subject to definite smootheness conditions which are easily refined). Then

using the boundary condition (3, 6) for the function u (P) desired, we find (the prime
denotes differentiation with respect to )

¢ 2 ”

_2?912—5 ‘083? L (u; P07 Q)ds =g (tO) + akxo" + ﬁkyo on Lk (3.9)
L

(k=0,1,2,...,m; to= o+ iYo)

g (to) = gy" (to) — *w (Py) / 0sy® (3.10)

We also pass to the limit as P — P, in the first equality in (2. 8) and we use
the known formula for the limit values of a double-layer potential, Then

Au(Pg) = LRS 1(Au; Py, Q)ds, Py L (3.11)
L

where the limit values on the line L for the function Au are in the left side and
values of the integral in the first equality in (2, 8) on the same line are in the right
side,

The set of equations (3. 9), (3. 11) yields a system of integral equations in the
unknown boundary values of the functions Au and JAu / dn. After the calcula-
tions related to differentiation of the operator [° under the integral sign in (3. 9),

by using the notation

17

Au(Q) = o (Q), aTQ‘A” = v(Q) (3.12)

we write the system of integral equations in the form

e § Vet (s 1) v (0) + ozt 1) 0 (] s = g (to) -+ waz’ + Brv” - (3.23)

L

o (o) + 71“* S [Fear (Lo, t) v (t) -+ koo (f0, £) O (£)] ds = O
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— 4k, (Lo, ) =2(lnr + 1)+ cos 2 (¢, t,) —r (2lnr + 1) X
k (ty) sin & (t, t,)

— 2ky5 (ty, 1) = risina (¢, ) — r™tsin 2a (£, ty) cos o (¢, t) —
k (to) sin a (¢, to) sin a (&y, ) + k (2,) cos [o (1) — @ (£,)] X
(In r 4 /)

o (f0, ) = 2(Inr 1), ag (for £) = 2 5o—In— —
nQ r
2ritsina(te, t) (r=|t—1t])

where k (t) is the curvature of the line L at the point ¢, o (£) is the angle form-
ed by the (positive) tangent to the line L at the point ¢ and the axis Oz, and
o, (t,, t) is also an angle formed by the same tangent and the vector ¢yt , and
measured in the positive direction from this latter, The notation a (f,) and & (¢, t,)
has an analogous meaning (the angles a (¢,, t), and o (¢, ¢,) are shown graphically
with their measurement directions in [4] ),
The additional conditions (3,3) and (3.4), which become

(vityds=0 (k=0,1,...,m) (3.14)
Ly

ﬂ‘ [zv () + y'o (t)]ds = 0, S [yv(t) — 2’0 ()}ds =

L, L,

(k=1,2,....m)

in the new notation, are appended to (3. 13).

Let us mention still another relationship which the functions v and ¢ should sat-
isfy, To this end, we calculate the normal derivative of the desired function u (z, y)
by means of (3, 7) and we integrate it along the line [ . Taking into account that
the function w is harmonic in S*, we find

S_‘;‘_;ds= 71;8 [a(t)"—dfli-—b(t) Au] ds

L L

a(t) = S|t—t0| (1n] — to] + ) sina(t, to)dso
L

b(t) = \ {eos a.(t) — a(to)) (In ¢ — to] 4 1) + - cos [a (to, 1) + o, to)l} dso
L
Using the boundary conditions (3. 1) and the notation (3, 12) here, we find

Tin' S [a@®)v(@) —b(t)o(t)lds =G, G= 2szdx—f1dy (3. 15)
L

L

we append the relationship (3. 15) to the system (3, 13) and (3. 14) in the case of
a finite domain ((3. 15) is not required in the case of an infinite domain).

Both equations (3. 13) will be inhomogeneous in the case of an infinite domain S,
where their right sides, f and h, respectively, without terms with the constants
ay, Pr will be
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F() == g () —d®uy/ds®, h(t) = Au, (onL) (3. 16)

The function u, is defined by (2.12). Conditions (3. 14) remain unchanged ex -
cept for one, for & = 0, which evidently drops out here.

Even in the case of a finite domain it is understood that a function analogous to

iy can be introduced if only the plane problem for a (finite) simply-connected do-
main S,* bounded by the contour L, allows of a closed form solution,

It is known that the plane problem of elasticity theory has been studied repeatedly
by different authors by the method of integral equations {5 — 9], The advantage of
the integral equations in v and o presented above is that their solution affords a poss-
ibility of determining the contour stresses of interest in problems for multiconnected
domains, without any further calculations,

A somewhat different system of equations for v and ¢ is constructed in [10]. One
of the equations of this system agrees exactly with the second equation in (3. 13),

As in [10], the representation (3. 7) taking account of the boundary conditions of
the problem in terms of the function w and resulting in the second equation in (3, 13),
is used above to construct the integral equations. Hence, it is sufficient to use just
any one of the two possible conditions of the plane problem to obtain the complete
system of integral equations, In this paper, the condition

du /05 7 f, on L
is used (J,, g« are functions given on L ), while the condition
J2u /0T =g, on L (3.17)

is given in [10], where o /d7T is differentitation with respect to a certain fixed direc-
tion coincident with the direction of the tangent at any point of the boundary L.

The meaning of condition (3.17) is not completely clear to this writer; the initial
conditions of the problem (3, 1) apparently do not permit the determination of the left
side of (3, 17) along the contour 7.

It is assumed g, = 0 in condition (3, 17) on the outlines of holes free of external
forces (only such holes were considered in [10] ). Even if it is considered that such
conditions are valid, it is not at all convenient to use them, They eliminate the
constants oy, f§,, without which the plane problem is generally incorrect; it is well
known that only a suitable selection of unknown constants @, B can assure the neces-
sary single-valuedness of the elastic displacements, The lack of these constants in
{10] results in a certain number of linear algebraic equations for discrete values of the
solution of the integral equations tuming out to be excess,

However, it can happen in some particular cases that a part of the constants «, f§
or even all the constants are zero. The acceptability of the numerical results in the
examples of two circular holes considered in {10] should apparently be explained by
this (the constants «, B are generally not needed in a problem with one hole).

Furthermore, the first condition in (3.14) for k = 0 is absent in [10], and aswill
be seen later, this condition plays an essential part in the investigation of the integral
equations (the authors of [10] were not concemned with an investigation of their in-
tegral equations),
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4 Investigation of the integral equations Letus
start with the case of a finite domain and let us consider the homogeneous system of
equations

ra S Uesi (2o, 8) v () ++ Kya (%, t) 0 ()] ds = 0 (4.1)

O (t0) + - § oo 1)V (0) + s (1, By 5 (1)) ds =
L

jv(t)ds=0 (k=0,1,2,... . m
L,

%{S[“(l)v(f)hb(t)o(:)}ds =0
L

Let us introduce the function v biharmonic in §*, defined for arbitrary continu-
ous functions v and o on L by the integral

v(P) = 711— S [r? ln»-}—-\‘ (Q) — o1/ %r‘-’ In-;—a] ds (4.2)
i

Let us call it v, for some solutian v,, o, of the homogeneous system, and let
us apply the Laplace operator to it, We obtain

Beg(P) =~ \ [(In - — 1) va (@1 —m (Q)arIn]ds  (49)
The limit values of the right side of (4.3) on . are zero when the point 7
tends from S~ tothepoint P, on [ according to the first equation in (4, 1), But
the right side of (4. 3) is harmonic in any of the domains §,~ (k = 0, 1,. .., m)
and is bounded at infinity because of the third equation in (4, 1), Hence, on the
basis of uniqueness of the harmonic function

1 / i - @ 1 -
[ 1) w@) —n (@ gL ]ds =0, Pes 9

A
i
After passing to the limit as P — P, from inside and outside of S*, we
obtain, respectively, from (4,3) and (4.4)
Avy (Pg) = 04 (Pg) on L (4.,5)

Let us fix the point P, on L, and let us differentiate (4, 3) and (4.4) with
respect to the direction of the extemal normal to L at the point P,.
Passage to the limit in the equalities obtained in this manner as P, — P, we
find 5
*é};;"AUg(Po):'\?o(Po) on L (4. 6)

and (4.2), whose left side equals v, for v -—wv, 0 = o, becomes

ve(P) = *%;“ S Lo (ve; P, Q)ds, Pe&S* 4.
L
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There hence follows on the basis of the Green's formula (2, 7)

—‘l%sl(l70§PvQ)dS=0, P=St (4. 8)
L

“2175[”(%; P,Q)+1(wsP,Q)ds =0, P=S"
L

Now, let us note that a biharmonic function in  §*, equal to the right side of
(4.7), is continuous up to the boundary [ . Its limit values have a second order
derivative with respect to the arc of the contour, which equals zero identically on L
because of the first equation in (4. 1). This means that the function mentioned should
take on constant values on L, and the second equality in (4, 8) yields

Z_;'SZ(UO;P’Q)ds:_A'}ﬁ PELk, k=0117---7m (4.9)
L

Limit values of the appropriate integral from S”on L are in the left side of
(4.9), and A, are certain perfectly definite real constants,

On the basis of the known properties of a double-layer potential, v, = A on
L, (k=0,,. .., m) follows from the first equality in (4.8) and (4.9). The
function expressed by the second integral in the left side of the second equality in
(4.8) is harmonic in each of the domains S, comprising S, and is bounded at
infinity by virtue of the last equation in (4. 1). Hence, (4.9) means

—%[-SZ(UO;P,())ds - —M, PESe, k=01,....m (410
L

Using the limit properties of a simple-layer potential exactly as in the derivation
of (4.6), we find from the first equality in (4, 8) and (4, 9)
ovg/on =0 on L, (k=20,1,... m)
Now let us use the Green's identity for the functions Avg, vg, where v, is

given in S+ by (4.7). We have

SS (Ave)2ds = S (A.vo o e L20) ds (4. 11)
L

S+

Because of the equations established above for the limit values of the function v,
and its normal derivative, as well as the relations written by the third equality in
(4.1) for v = v,, the right side of the preceding formula equals zero. Therefore,
Ave =0 in S+, and vy (Q) = 0, (Q) =0 on L on the basis of (4. 5) and
(4.6), Uniqueness of the solution of the system (4. 1) is proved.

Turning to the case of an infinite domain, we first clarify the behavior of the
fanction (4, 2) for large |z|. After elementary calculations, we obtainthe asymp-
totic formula (A and B are real and complex constants)

8w P)=A |22 |In|z |-+ B+ Bz)(In |z |-+ ) -+

(4.12)
O(n|z]) (lz]—o0)
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—A={v(tyds, B = [itv(t)—it'o(t)ds (4.13)
L

L

In the case of the infinite domain, the homogeneous system will consist of the first
two equations in (4, 1) obtained from the inhomogeneous equations for f; = f, = o,

=PBr=0 on Lytk=1,...,m), I =B =C’ =0 and the following
additional equations to a total number of m -}- 2:
$viyds =0 (k=1,...,m) (4.14)

Ly

Y [zv(t) + y'o(t))ds = \n [yv(t) —Z'o(t)] ds =0
L L

(L is again the set of contours L,, L,, . . ., Lp).
Analogously to the preceding, we introduce the function v, defined in terms of
Vo, O¢ the solution of the homogeneous system, by means of (4,2), and the limit
relationships (4. 5) and (4. 6) are established on the basis of the Green's formula (2, 21)
for uy, = 0 from the second equation in (4, 1) and the first equations in (4, 14),
Using (2. 20) for up, = 0 and the first equation in (4, 1) we find as in the case of a
finite domain

Vg = —hp, Ovp/0n =0 on L, (k=1,2,... m)

where Aj, is some real constant,
Formula (4. 11) remains for an infinite domain, In order to prove this, the integral

. dv, dAv,
S (Av Zn — Yo T) ds (4.15)

is investigated for large |z |.
According to (4, 14), the coefficients A and B from (4. 13), which correspond
to the function v, , equal zero, and (4, 12) yields the following estimate for v,

vy = O (In | z]) (4. 16)

It shows that the function v, is representable outside L, by (2.1), where ¢
and y are the series (2, 6) without the coefficients a, and ¢,’. On the basis of
the above, the estimate (4, 16) allows the following strengthening:

a 0Av _
v=0(), S==0(z), Arp=0(zI% —3,~ =00z

In the presence of the preceding formulas, the integral (4, 15) tends to zero as
R —oo and this indeed proves the validity of (4. 11) in the case under consideration,
As before, Av, = 0 in S+ follows, meaning v, (Q) = 6,(Q) =0 on L.
Let us turn to the inhomogeneous integral equations, and because of the complete
analogy we limit ourselves to considering the case of a finite domain, Let us first
note that the first equation in (3. 14) can be written as

@
=T Q(Py) =0 (4.17)
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1 ([ 1 1
Q (Py) = WS [ v (@) — 6(Q) ot m%] ds + w(Py) — (4.18)

L
go(Po) —wto — Py on Ly (k=0,1,...,m)
Limit values of the appropriate functions from the domain S* are everywhere in
the preceding equality,
The function ( defined by (4. 18), is single-valued and continuous on each of
the contours [, for any v and ¢. Hence, the equation obtained from (4. 17) by
differentiation with respect to the arc sy, namely, the equation

a® [ dsg®Q (Py) = (4.19)

is equivalent to the initial equation, (For the differentiation of (4, 17) with respect to
the arc s, to be valid it is first necessary to raise the smoothness of the line L,
to require, say, that the coordinates of its points z, ¥ have continuous derivatives
with respect to s to the third order), Hence, if the first equation in (3. 13) is replac-
ed by (4. 19) in the integral equations system under consideration, then we obtain a
system completely equivalent to the initial system,

On the other hand, the system (4. 19) and the second equation in (3. 13) will be a
system of singular integral equations of normal type with zero index (see [4], Chapter
VI), as can be seen on the basis of (3.13) for the kernel  k;; . As is known, the
Fredholm theory which we shall use, is valid for such a system,

The presence of the solution of the system (4. 19) and the second equation in (3, 13)
is assured by the existence theorem for the solution of the fundamental biharmonic
problem for multiconnected domains [5, 9]. (We prefer not to resort to the appropriate
Fredholm theorem here to avoid the investigation of the associated homogeneous sys-
tem). The final number of arbitrary constants in the solution in terms of nontrivial
solutions of the corresponding homogeneous system of integral equations is determined
uniquely on the basis of the uniqueness, proved above, for the solution of the system
(3. 13), the first equation in (3. 14) and (3, 15), Hence, the solution v, 0 mentioned
will depend exclusively on g o, [, and will contain the unknown constants .,

B, lnearly,

If this solution is substituted into the last two conditions in (3, 14), we thenobtain

a system of linear equations to determine @, f3, , which becomes

2m
kz‘l apap =F, (i=1,2,... c2m) (4. 20)
=1
in the notation
&y == di’ Bi = Om+j (] =1,2...., m)

where F; are unknown constants dependent on the functions f, f, given on L and
which vanish for f; (¢) = f, (¢) =0 on L, and a;, are also definite constants
dependent only on the geometry of the domain §* (there is no real need to solve
the integral equations in the system (4.20)).

The system (4. 20) defines the constants &, (k =1, 2, . ..,2m) uniquely. In
fact, let the system have the solution a,° for #, = 0(k=1,2,..., 2m). Then
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the system of integral equations (3. 13), (3, 14) will have a solution for g (1) = 0
on [ ,and ap = ap° By = a:n+k. Substituting this value of v,, 5, in the right
side of (4,2), we construct the functions v, (#) which is biharmonic in S$* and
satisfies the following boundary conditions on L

v, . 0, o i .0 )
6—z+l_5§—=ak + 0, on Lpik=0,1,....m)

and also the conditions of single-valuedness of the elastic displacements, Then p, =
const jn S— and all the o;° = 0 on the basis of the uniqueness of the solution
of the plane problem,

Therefore, the system of integral equations (3. 13) — (3, 15) is solvable for any
(sufficiently smooth) boundary values f,, f, subjected to the above-mentioned
constraints, and determines the functions v, ¢ and the previously unknown constants
oy, Py uniquely,

The integral equations(3. 13) have kernels with logarithmic singularities and, as
follows from the above, are equivalent in the sense of the existence of the solution of
regular equations of the second kind, A numberical realization of the solutions can
be accomplished by known, well-developed methods.
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